Определение метода гель проникающая хроматография. Гельпроникающая хроматография. Базовая вэжх система для гпх

Эксклюзионная хроматография

Гель-фильтрация или эксклюзионная хроматография (ситовая, гель-проникающая, гель-фильтрационная хроматография) - разновидность хроматографии , в ходе которой молекулы веществ разделяются по размеру за счёт их разной способности проникать в поры неподвижной фазы. При этом первыми выходят из колонки наиболее крупные молекулы (бо́льшей молекулярной массы), способные проникать в минимальное число пор стационарной фазы. Последними выходят вещества с малыми размерами молекул, свободно проникающие в поры. В отличие от адсорбционной хроматографии , при гель-фильтрации стационарная фаза остается химически инертной и с разделяемыми веществами не взаимодействует.

Принцип

В колонку вносят раствор образца, объём которого является лимитирующим для качества хроматографии. Для аналитических разделений он не должен превышать 0,1 % от CV (общего объёма колонки), а для препаративной очистки он должен быть не выше 8-10 % от CV. Колонка упакована порошком, частицы или гранулы которого имеют поры определенного диаметра. Высокомолекулярные вещества, не входящие в поры, проходят между гранулами, поэтому их объём удержания равен объёму колонки за вычетом объёма стационарной фазы (так называемый, свободный объем ). Они элюируются первыми. Молекулы средних размеров помещаются в поры сорбента, но не полностью. Поэтому их объём удержания несколько выше свободного объёма. Они элюируется вторыми. Самые мелкие молекулы свободно входят в поры вместе с молекулами растворителя. Поэтому их объём удержания в колонке намного выше свободного и приближается к общему объёму колонки (то есть 100 % CV). Они элюируются последними.

Сорбенты

Гель - гетерогенная система, в которой подвижная фаза (обычно водная) всегда находится внутри пор стационарной или твердой фазы, называемой гелевой матрицей.

Низкого давления

  • декстран,
  • сефадекс,
  • сефакрил,
  • сефароза,
  • супердекс.

Высокого давления

  • полиметакрилат,

Wikimedia Foundation . 2010 .

Смотреть что такое "Эксклюзионная хроматография" в других словарях:

    - (ситовая хро матография), жидкостная хроматография, основанная наразл. способности молекул разного размера проникать в поры неионогенного геля, к рый служит неподвижной фазой. Различают гель проникающую хроматографию (элюент орг. р ритель) и гель … Химическая энциклопедия

    эксклюзионная хроматография - ekskliuzinė chromatografija statusas T sritis chemija apibrėžtis Skysčių chromatografija, pagrįsta medžiagos molekulių pasiskirstymu tarp porose esančio ir judančio tirpiklio. atitikmenys: angl. exclusion chromatography rus. эксклюзионная… … Chemijos terminų aiškinamasis žodynas

    - (от др. греч … Википедия

    - (от греч. chroma, родительный падеж chromatos цвет, краска и...графия физико химический метод разделения и анализа смесей, основанный на распределении их компонентов между двумя фазами неподвижной и подвижной (элюент), протекающей через… … Большая советская энциклопедия

    Вид хрома тографии, в к рой подвижной фазой служитжидкость (элюент), а неподвижной та. сорбент, тв. носитель с нанесённой на его поверхность жидкостью или гель. Осуществляют в колонке, заполненной сорбентом (колоночная хроматография), на плоской… … Естествознание. Энциклопедический словарь

    Это хроматография, в которой подвижной фазой является жидкость. Жидкостная хроматография разделяется на жидкостно адсорбционную (разделение соединений происходит за счет их различной способности адсорбироваться и десорбироваться с поверхности… … Википедия

    гель проникающая хроматография - Gel Permeation Chromatography Гель проникающая хроматография (эксклюзионная, ситовая, гель фильтрационная) Вариант жидкостной хроматографии … Толковый англо-русский словарь по нанотехнологии. - М.

    Типичная установка для ручной колоночной хроматографии. Стеклянная колонка, снабженная внизу краном для регулирования скорости процесса, набита твердой фазой (белого цвета), резервуар вверху наполнен жидким элюентом, в верхней части твердой фазы… … Википедия

    Приборы, измеряющие содержание (концентрацию) одного или неск. компонентов в жидких средах; Ж. а. часто называют также приборы для определения св в жидкостей (вискозиметры, плотномеры и др.). Различают Ж. а. лабораторные и промышленные (для… … Химическая энциклопедия

    См. Эксклюзионная хроматография … Химическая энциклопедия

Эксклюзионная хроматография представляет собой вариант жидкостной хроматографии, в котором разделение происходит за счет распределения молекул между растворителем, находящимся внутри пор сорбента, и растворителем, протекающим между его частицами, т.е. неподвижной фазой служит пористое тело или гель, а различное удерживание веществ обусловлено различия в размерах молекул веществ, их форме и способности проникать в поры неподвижной фазы. В названии метода отражен механизм процесса, от английского термина “Size Exclusion” , означающего исключение по размеру. Гель-проникающая хроматография (ГПХ) - эксклюзионная хроматография, в которой неподвижной фазой служит гель.

В отличие от остальных вариантов ВЭЖХ, где разделение идет за счет различного взаимодействия компонентов с поверхностью сорбента, роль твердого наполнителя в эксклюзионной хроматографии заключается только в формировании пор определенного размера, а неподвижной фазой является растворитель, заполняющий эти поры.

Принципиальной особенностью метода является возможность разделения молекул по их размеру в растворе в диапазоне практически любых молекулярных масс - от 10 2 до 10 8 , что делает его незаменимым для исследования синтетических высокомолекулярных веществ и биополимеров.

Рассмотрим принципиальные основы метода. Объем эксклюзионной колонки можно выразить суммой трех слагаемых:

V с = V м + V i + V d ,

где V м - мертвый объем (объем растворителя между частицами сорбента, иначе говоря, объем подвижной фазы); V i - объем пор, занятый растворителем (объем неподвижной фазы); V d - объем матрицы сорбента без учета пор. Полный объем растворителя в колонке V t представляет собой сумму объемов подвижной и неподвижной фаз:

V t = V м + V i .

Удерживание молекул в эксклюзионной колонке определяется вероятностью их диффузии в поры и зависит главным образом от соотношения размеров молекул и пор. Коэффициент распределения К d , как и в других вариантах жидкостной хроматографии, представляет собой отношение концентраций вещества в неподвижной и подвижной фазах:

K d = C 1 /C 0

Так как подвижная и неподвижная фазы имеют одинаковый состав, то К d вещества, для которого обе фазы одинаково доступны, равен единице. Эта ситуация реализуется для молекул с самыми малыми размерами (в том числе и молекул растворителя), которые проникают во все поры, и поэтому движутся через колонку наиболее медленно. Их удерживаемый объем равен полному объему растворителя V t . Все молекулы, размер которых больше размера пор сорбента, не могут попасть в них (полная эксклюзия) и проходят по каналам между частицами. Они элюируются из колонки с одним и тем же удерживаемым объемом, равным объему подвижной фазы V м . Коэффициент распределения для этих молекул равен нулю.

Принцип разделения и детектирования пробы в эксклюзионной хроматографии.
А - ввод образца; В - разделение по размерам; С - выход крупных макромолекул;
D - выход мелких макромолекул.

Связь между удерживаемым объемом и молекулярной массой (или размером молекул) образца описывается частной калибровочной кривой, т.е. каждый конкретный сорбент характеризуется своей калибровочной кривой, по которой оценивают область разделяемых на нем молекулярных масс. Точка А соответствует пределу эксклюзии, или мертвому объему колонки V м . Все молекулы, масса которых больше, чем в точке А, будут элюироваться одним пиком с удерживаемым объемом V м . Точка В отражает предел проникания, и все молекулы, масса которых меньше, чем в точке В, также будут выходить из колонки одним пиком с удерживаемым объемом V t . Между точками А и В располагается диапазон селективного разделения. Соответствующий ему объем

V i = V t - V м

принято называют рабочим объемом колонки. Отрезок CD представляет собой линейный участок частной калибровочной кривой, построенной в координатах V R - lg M . Этот участок описывается уравнением

V R = C 1 - C 2 lg M ,

где C 1 - отрезок, отсекаемый на оси ординат продолжением отрезка CD, С 2 - тангенс угла наклона этого отрезка к оси ординат. Beличину С 2 называют разделительной емкостью колонки, ее выражают числом миллилитров растворителя, приходящегося на один порядок изменения молекулярной массы. Чем больше разделительная емкость тем селективнее разделение в данном диапазоне масс. В нелинейных областях калибровочной кривой (участки АС и BD) в связи с уменьшением С 2 эффективность фракционирования заметно снижается. Кроме того, нелинейная связь между lg M и V R существенно усложняет обработку данных и снижает точность результатов. Поэтому стремятся выбирать колонку (или набор колонок) так, чтобы разделение анализируемого полимера протекало в пределах линейного участка калибровочной кривой.

Если какое-либо вещество элюируется с удерживаемым объемом больше V t , то это указывает на проявление других механизмов разделения (чаще всего адсорбционного). Адсорбционные эффекты обычно проявляются на жестких сорбентах, но иногда наблюдаются и на полужестких гелях, видимо, из-за повышенного сродства к матрице геля. Примером может служить адсорбция ароматических соединений на стиролдивинилбензольных гелях.

По-видимому, изменением параметров взаимодействия в системе полимер - сорбент - растворитель можно переходить от адсорбционного механизма к эксклюзионному и наоборот. В общем случае в эксклюзионной хроматографии стремятся полностью подавить адсорбционные и другие побочные эффекты, так как они, особенно при исследовании молекулярно-массового распределения (ММР) полимеров, могут существенно исказить результаты анализа. Одним из мешающих факторов является гидродинамический режим хроматографирования, в котором роль неподвижной фазы играют стенки колонки (канала) и разделение смеси макромолекул или частиц происходит вследствие различия скоростей протекания подвижпой фазы вдоль оси капала и у его стенок, а также за счет распределения разделяемых частиц по сечению канала в соответствии с их размером.

Принципиальными отличиями эксклюзионной хроматографии от других вариантов являются априори известная продолжительность анализа в конкретной используемой системе, возможность предсказания порядка элюирования компонентов по размеру их молекул, примерно одинаковая ширина пиков во всем диапазоне селективного разделения и уверенность в выходе всех компонентов пробы за достаточно короткий промежуток времени, соответствующий объему V t . Данный метод применяют преимущественно для исследования ММР полимеров и анализа макромолекул биологического происхождения (белки, нуклеиновые кислоты и т.д.), но указанные особенности делают его чрезвычайно перспективным для анализа низкомолекулярных примесей в полимерах и предварительного разделения проб неизвестного состава. Получаемая при этом информация существенно облегчает выбор наилучшего варианта ВЭЖХ для анализа данной пробы. Кроме того, микропрепаративное эксклюзионное разделение часто используют в качестве первого этапа при разделении сложных смесей путем комбинации различных видов ВЭЖХ.

В эксклюзионной хроматографии полимеров предъявляются наиболее жесткие требования к стабильности потока подвижной фазы. Точность результатов в эксклюзионной хроматографии полимеров заметно зависит от температуры. При ее изменении на 10°С ошибка определения средних молекулярных масс превышает ±10%. Поэтому в данном варианте ВЭЖХ обязательно термостатирование разделительной системы. Как правило, достаточна точность поддержания температуры ±1°С в пределах до 80-100°С. В некоторых случаях, например, при анализе полиэтилена и полипропилена, рабочая температура составляет 135-150°С. Наиболее распространенным детектором в эксклюзионной хроматографии полимеров является дифференциальный рефрактометр.

Выбор сорбентов, обеспечивающих оптимальные условия для решения конкретной аналитической задачи, проводят в несколько этапов. Матрица геля должна быть химически инертной, т.е. в ходе эксклюзионной хроматографии не должно происходить химическое связывание разделяемых макромолекул. При разделении белков, ферментов, нуклеиновых кислот при контакте с матрицей не должна происходить их денатурация. Первоначально на основе данных о химическом составе или растворимости анализируемых веществ устанавливают, какой вариант процесса следует применить - хроматографию в водных системах или в органических растворителях, что в значительной степени определяет тип необходимого сорбента. Разделение веществ низкой и средней полярности в органических растворителях можно успешно осуществить как на полужестких, так и на жестких гелях. Исследование ММР гидрофобных полимеров, содержащих полярные группы, чаще проводят на колонках со стиролдивинилбензольными гелями, так как в этом случае практически не проявляются адсорбционные эффекты и не требуется добавка модификаторов к подвижной фазе, что значительно упрощает подготовку и регенерацию растворителя.

Для работы в водных системах используют главным образом жесткие сорбенты; иногда очень хорошие результаты удается получить на полужестких гелях специальных типов. Затем по калибровочным кривым или данным о диапазоне фракционирования, выбирают сорбент нужной пористости с учетом имеющихся сведений о молекулярной массе образца. Если анализируемая смесь содержит вещества, отличающиеся по молекулярной массе не более чем на 2-2.5 порядка, то обычно удается разделить их на колонках с одним размером пор. При более широком диапазоне масс следует использовать наборы из нескольких колонок с сорбентами различной пористости. Ориентировочно калибровочную зависимость в этом случае получают сложением кривых для отдельных сорбентов.

Растворители, применяемые в эксклюзионной хроматографии, должны удовлетворять следующим основным требованиям:

1) полностью растворять образец при температуре разделения;

2) смачивать поверхность сорбента и не ухудшать эффективность колонки;

3) предотвращать адсорбцию (и другие взаимодействия) разделяемых веществ с поверхностью сорбента;

4) обеспечивать максимально высокую чувствительность детектирования;

5) иметь низкую вязкость и токсичность.

Кроме того, при анализе полимеров имеет существенное значение термодинамическое качество растворителя: весьма желательно, чтобы он был "хорошим" по отношению к разделяемому полимеру и матрице геля, т.е. были максимально выражены концентрационные эффекты.


Хроматограмма олигомеров полиэтиленгликоля, полученная на составной колонке 2(600х7.5) мм с TSK-гелем G2000PW, ПФ 0.05 М раствор NaCl, расход 1 мл/мин, давление 2 МПа, температура 40°С, рефрактометрический детектор.

Растворимость образца обычно является главным лимитирующим фактором, ограничивающим ассортимент пригодных подвижных фаз. Наилучшим органическим растворителем для эксклюзионной хроматографии синтетических полимеров по комплексу свойств является ТГФ. Он обладает уникальной растворяющей способностью, низкой вязкостью и токсичностью, лучше многих других растворителей совместим со стиролдивинилбензольными гелями и, как правило, обеспечивает высокую чувствительность детектирования при использовании рефрактометра или УФ-детектора в области до 220 нм. Для анализа высокополярных и нерастворимых в тетрагидрофуране полимеров (полиамиды, полиакрилонитрил, полиэтилентерефталат, полиуретаны и др.) обычно используют диметилформамид или μ-крезол, а разделение полимеров низкой полярности, например различных каучуков и полисилоксанов, часто проводят в толуоле или хлороформе. Последний является также одним из лучших растворителей при работе с ИК-детектором. о -Дихлорбензол и 1,2,4-трихлорбензол применяют для высокотемпературной хроматографии полиолефинов (обычно при 135 °С), которые в других условиях не растворяются. Эти растворители имеют очень высокий показатель преломления, поэтому иногда их целесообразно использовать вместо тетрагидрофурана для анализа полимеров с низким коэффициентом преломления, что позволяет повысить чувствительность при детектировании рефрактометром.

Для предотвращения окисления растворителей и полужестких гелей в условиях высокотемпературной эксклюзионной хроматографии к о -дихлорбензолу и 1,2,4-трихлорбензолу добавляют антиокислители (ионол, сантонокс R и др.).

Жесткие сорбенты совместимы с любыми подвижными фазами, имеющими рН<8-8.5. При более высоких значениях рН силикагель начинает растворяться и колонка необратимо теряет эффективность. Стиролдивинилбензольные гели совместимы в основном с элюентами умеренной полярности. Для работы на колонках с μ-стирогелем (от 1000Å и выше) пригодны тетрагидрофуран, ароматические и хлорированные углеводороды, гексан, циклогексан, диоксан, трифторэтанол, гексафторпропанол и диметилформамид.

Степень набухания частиц геля в различных растворителях неодинакова, поэтому замена элюента в колонках с данными сорбентами может привести к снижению эффективности за счет изменения объема геля и образования пустот. При использовании неподходящих растворителей (ацетон, спирты) происходит столь сильная усадка геля, что колонка оказывается безнадежно испорченной. У сорбентов с малым размером пор (типа μ-стирогеля 100Е и 500Е) такая усадка наблюдается как в полярных, так и в неполярных растворителях, поэтому с ними, кроме того, нельзя работать в насыщенных углеводородах, фторированных спиртах и диметилформамиде. Удобным, хотя и весьма дорогим выходом из положения является использование отдельных наборов колонок для каждого применяемого растворителя. Некоторые фирмы с этой целью выпускают колонки с одним и тем же размером пор, заполненные разными растворителями - тетрагидрофураном, толуолом, хлороформом и ДМФА.

При разделении макромолекул основной вклад в размывание полосы определяется затрудненной массопередачей. К сожалению, многие из применяемых элюентов имеют высокую вязкость. Для снижения вязкости (а также для улучшения растворимости) эксклюзионную хроматографию часто проводят при повышенных температурах, что существенно улучшает эффективность хроматографической системы.

Анализ большинства полимеров на жестких гелях часто осложняется их адсорбцией. Для подавления адсорбции обычно используют растворители, которые адсорбируются на насадке колонки сильнее, чем анализируемые вещества. Если по каким-либо причинам это невозможно, то подвижную фазу модифицируют добавкой 0.1-2% полярного модификатора, например тетрагидрофурана. Значительно более сильными модификаторами являются этиленгликоль и полигликоли с различной молекулярной массой (ПЭГ-200, ПЭГ-400, карбовакс 20 М). Иногда, например при анализе поликислот в диметилформамиде, требуется добавка достаточно сильных кислот. Следует отметить, что полностью устранить адсорбцию добавкой модификаторов удается не всегда. В таких случаях нужно использовать полужесткие гели. Некоторые полимеры хорошо растворяются только в высоко полярных растворителях (ацетон, диметилсульфоксид и т. п.), несовместимых со стиролдивинилбензольными гелями. При их разделении на жестких сорбентах выбор растворителя проводят в соответствии с общими принципами, изложенными выше.

Свои характерные особенности имеет эксклюзионная хроматография в водных средах. Из-за специфики многих разделяемых систем (белки, ферменты, полисахариды, полиэлектролиты и др.) и разнообразия применяемых сорбентов существует очень много вариаций состава ПФ для подавления различных нежелательных эффектов. В качестве сорбентов применяют декстрановые гели (сефадексы), полиакриламидные, оксиакрилметакрилатнык гели, гели агарозы и др. В процессе эксклюзионного хроматографирования поведение макромолекул определяется в первую очередь их гидродинамическими размерами, а характерной особенностью белков, ферментов и синтетических полиэлектролиты является зависимость размеров макромолекул от рН и ионной силы раствора. Чем меньше значение рН и ионной силы раствора, тем выгоднее становятся развернутые конформации макромолекул (так называемое полиэлектролитное набухание). В этом случае среднестатистические размеры растут, что приводит к уменьшению объемов удерживания в режиме эксклюзионной хроматографии. Общими приемами модификации является добавка различных солей и применение буферных растворов с определенным значением рН. В частности, поддержание рН<4 дает возможность подавить слабую ионообменную активность силикагелей, обусловленную присутствием на их поверхности кислых силанольных групп. Требуемая ионная сила подвижной фазы достигается при концентрации буферного раствора 0,05-0,6М; оптимальную концентрацию подбирают экспериментально. Для предотвращения ионообменной сорбции катионных соединений наиболее часто используют такой активный модификатор, как тетраметиламмонийфосфат при рН=3. Однако при разделении некоторых белков могут проявляться гидрофобные взаимодействия, в свою очередь осложняющие эксклюзионный механизм разделения. Те же эффекты иногда проявляются и при работе с дезактивированными гидрофильными сорбентами. Для их устранения к растворителю добавляют метанол. Иногда в водную подвижную фазу вводят полярные органические растворители, полигликоли, кислоты, основания и поверхностно-активные вещества.

Важнейшей областью применения эксклюзионной хроматографии является исследование высокомолекулярных соединений. Применительно к синтетическим полимерам этот метод за короткий срок занял главенствующее положение для определения их молекулярно-массовых характеристик и интенсивно используется для изучения других видов неоднородности. В химии биополимеров эксклюзионную хроматографию широко применяют для фракционирования макромолекул и определения их молекулярной массы.

Принципиальная черта эксклюзионной хроматографии высокомолекулярных синтетических полимеров заключается в невозможности разделения смеси на индивидуальные соединения. Эти вещества представляют собой смесь полимергомологов с различной степенью полимеризации и соответственно с разными молекулярными массами M i . Молекулярную массу таких смесей можно оценить некоторой средней величиной, которая зависит от способа усреднения. Содержание молекул каждой молекулярной массы M i определяют либо по их численной доле в общем числе полимерных молекул, либо по массовой доле в их общей массе. Обычно полимер характеризуют найденными этими способами средними величинами, которые называют соответственно среднечисленной M n и среднемассовой M w молекулярной массой. Значения M n дают, например, криоскопия, осмометрия, эбулиоскопия, а значениям M w - светорассеяние и ультрацентрифугирование.

Если обозначить число молекул с молекулярной массой M i через N i , то обшую массу полимера можно выразить через Σ M i N i , численную долю молекул с массой M i через N i / Σ N i , а массовую долю молекул с массой M i - через f i = M i N i / Σ M i N i . Чтобы определить часть общей массы полимера, соответствующую этим долям, их умножают на M i .

Просуммировав полученные значения для всех величин, получают средние молекулярные массы:

M n = Σ 1 /( f i /M i ) = (Σ M i N i )/(Σ N i )

M w = Σ M i f i = (Σ M i 2 N i )/(Σ M i N i )

Отношение M w > / M n характеризует полидисперсность полимера.

На практике молекулярную массу полимеров часто определяют методом вискозиметрии. Средневязкостную молекулярную массу находят по уравнению Марка - Куна - Хаувинка:

[η ] = K η / M η a

где [η ] - характеристическая вязкость; К η , а - константы для данной системы полимер - растворитель при данной температуре.

Величина M η описывается уравнением

M η = (Σ M i a f i ) 1/a

Как правило, величины средних молекулярных масс удовлетворяют неравенству

M w > M η > M n

Обычно полимерный образец характеризуют комплексом значений M w , M η , M n и M w /M η , но этого может быть недостаточно. Наиболее полную информацию о молекулярно-массовой неоднородности образца дают кривые ММР. Типичная хроматограмма, полученная в процессе эксклюзионного разделения, представляет собой достаточно плавную кривую с одним или несколькими максимумами. Из этой кривой с использованием калибровочной зависимости и соответствующих расчетов определяют значения средних молекулярных характеристик и ММР полимера в дифференциальной или интегральной форме.

Транскрипт

1 УЧРЕЖДЕНИЕ РОССИЙСКОЙ АКАДЕМИИ НАУК ИНСТИТУТ ЭЛЕМЕНТООРГАНИЧЕСКИХ СОЕДИНЕНИЙ им. А.Н.НЕСМЕЯНОВА. НАУЧНО-ОБРАЗОВАТЕЛЬНЫЙ ЦЕНТР ПО ФИЗИКЕ И ХИМИИ ПОЛИМЕРОВ ГЕЛЬ-ПРОНИКАЮЩАЯ ХРОМАТОГРАФИЯ ПОЛИМЕРОВ Задача спецпрактикума Благодатских И.В. МОСКВА

2 Оглавление. ОСНОВЫ ХРОМАТОГРАФИИ ПОЛИМЕРОВ. Движущие силы и режимы хроматографии полимеров..характеристики хроматографического пика. Концепция теоретических тарелок..3 Основы метода эксклюзионной (гель-проникающей) хроматографии. ПРОВЕДЕНИЕ ПРАКТИЧЕСКОЙ РАБОТЫ ПО АНАЛИЗУ ММР ПОЛИМЕРА МЕТОДОМ ГЕЛЬ- ПРОНИКАЮЩЕЙ ХРОМАТОГРАФИИ 3. ЛИТЕРАТУРА. ОСНОВЫ ХРОМАТОГРАФИИ ПОЛИМЕРОВ.. Движущие силы и режимы хроматографии полимеров. Хроматография - метод разделения веществ путем распределения между двумя фазами, одна из которых подвижна, а другая неподвижна. Роль подвижной фазы в жидкостной хроматографии играет жидкость (элюент), движущаяся в каналах между частицами вдоль колонки, заполненной пористым материалом (см. рис.). Рис.. Движение макромолекулы в хроматографической колонке: d k - размер каналов между частицами неподвижной фазы; d n - размер пор; R - размер макромолекулы; t s - время, проведенное макромолекулой в поре, t m - в подвижной фазе. Неподвижной фазой являются поры сорбента, заполненные жидкостью. Средняя скорость передвижения этой фазы вдоль оси колонки равна нулю. Анализируемое вещество перемещается вдоль оси колонки, двигаясь вместе с подвижной фазой и время от времени делая остановки при попадании в неподвижную фазу. Этот процесс иллюстрирует рис., где схематически изображено скачкообразное движение макромолекулы с размером R по каналам с размером d, соответствующим размеру частиц. Молекулы делают остановки в щелевидных порах, размер которых по порядку величины соответствует размеру макромолекул. Время между последовательными остановками может быть записано как:

3 t t s + t m + t k, () где t s - время пребывания молекулы в неподвижной фазе, t m d - время, проведенное молекулой в подвижной фазе (D - D коэффициент поперечной диффузии, t k - время перехода из подвижной фазы в неподвижную и обратно). Обычно в процессах высокоэффективной жидкостной хроматографии (Hgh Performance Lqud Chromatography в англоязычной литературе) в ее аналитическом варианте это время t k много меньше первых двух и его можно опустить в формуле (). Если число остановок при движении по колонке достаточно велико, то и общее время движения макромолекулы по колонке достаточно велико, по сравнению с характерным временем установления равновесия. В этом случае для определения вероятности нахождения макромолекулы в единице объема неподвижной фазы по отношению к подвижной фазе (или коэффициента распределения K d равного отношению концентраций в данных фазах) можно использовать методы равновесной термодинамики. А именно, коэффициент распределения будет определяться свободной энергией перехода макромолекулы из подвижной фазы в неподвижную: T S H G RT Kd exp exp () RT Для цепи, состояшей из N сегментов, K exp(N µ), (3) d где µ - изменение химического потенциала сегмента. Коэффициент распределения в хроматографии является фундаментальным понятием и определяется следующим образом: VR V K d (4) Vt V где V R - объем с которым выходит из колонки данное вещество, V - объем подвижной фазы, определяемый по выходу наиболее крупных макромолекул не попадающих в поры, V t - объем элюирования веществ, выходящих вместе с фронтом растворителя. Из (3) сразу можно видеть, что в зависимости от знака G, макромолекулы ведут себя различным образом при попадании в пору (см.рис.) : Рис.. если G>, то K d стремится к с ростом длины макромолекулы (при этом уменьшается и объем элюирования). Это соответствует эксклюзионному режиму хроматографии. При G< K d экспоненциально растет с ростом ММ и это соответствует адсорбционному режиму хроматографии. Таким образом, оба режима хроматографии могут рассматриваться в рамках единого механизма и, более того, плавно меняя энергию взаимодействия сегмента с поверхностью сорбента за счет состава растворителя или температуры, можно обратимо переходить от одного режима к другому. Экспериментально это было впервые показано в работе Тенникова и др. . Точка (для данной пары полимер - сорбент - это состав растворителя и температура), соответствующая равенству G, при которой происходит компенсация энтропийных потерь и энергетического выигрыша при каждом соударении сегмента макромолекулы со стенкой поры называется критической точкой адсорбции или критическими условиями хроматографии. Как видим, в этих условиях не происходит деления по ММ и это обстоятельство является предпосылкой для использования режима критической хроматографии для исследования разных типов молекулярной неоднородности полимеров, таких как число функциональных групп на концах цепи, состав блоксополимеров, топология 3

4 (наличие разветвленных или циклическтх макромолекул). Этот хроматографический метод является относительно новым и некоторые наиболее интересные результаты его применения можно найти, например, в работах [,3,4]. Режим хроматографии, соответствующий условию G< широко применяется для разделения низкомолекулярных соединений и называется, в зависимости от химической природы функциональных групп на поверхности сорбента, адсорбционной, нормальнофазной, обращеннофазной, ионпарной и т.д. хроматографией. Для полимеров его применение ограничено областью слабых взаимодействий вблизи критических условий и областью олигомерных макромолекул, т.к. с ростом длины цепи мы переходим к практически необратимой адсорбции макромолекулы на колонке. Наиболее важным для полимеров является режим эсклюзионной хроматографии или, как его еще называют, гельпроникающей хроматографии. Этот режим более подробно будет рассмотрен в следующем разделе, а сейчас мы перейдем к описанию некоторых важнейших хроматографических характеристик... Характеристики хроматографического пика. Концепция теоретических тарелок. После прохождения через хроматографическую колонку узкой зоны какого-либо монодисперсного вещества, на выходе мы получаем расширенную зону в виде пика приблизительно гауссова по форме (в случае хорошо упакованной колонки и правильно выбранной скорости хроматографии). Причины расширения пика лежат в различных диффузионных процессах, сопровождающих движение молекул вдоль колонки (см. например, соотношение ()). Наиболее важные характеристики пика - объем элюирования или V R или объем удерживания (относится к центру пика) и дисперсия пика, т.е. второй центральный момент (см.рис.3): σ h V V dv R. (5) Справедливы следующие соотношения между величинами, показанными на рис.3: σ, 43W W b. (6) 4 Рис. 3. Модель гауссова пика. Параметры уширения пика. Часто все эти величины выражаются в единицах времени, тогда говорят о времени удерживания и т.д., однако, в этом случае скорость потока элюента должна быть строго фиксирована. Существует простая феноменологическая теория описания относительного вклада расширения зоны в хроматографическое разделение. Это - теория тарелок. Хроматографическая колонка мысленно делится на ряд последовательных зон, в каждой из которых достигается полное равновесие между растворенным веществом в подвижной и неподвижной фазе. Физическую основу этого подхода составляет скачкообразное движение, описанное в начале первого раздела, и число теоретических тарелок в колонке связано с числом остановок при попадании в неподвижную фазу за время движения данного вещества по колонке. Чем больше это число, тем больше число теоретических тарелок и тем выше эффективность колонки. Число теоретических тарелок определяется следующим образом: 4

5 VR N σ V 5,54 W R V 6 W R b. (7) Поскольку эта величина меняется при изменении объема элюирования, правильно для характеристики эффективности колонки использовать неудерживаемое вещество, выходящее при K d..3. Основы метода эксклюзионной (гель-проникающей) хроматографии. Эксклюзионная хроматография (Sze Excluson Chromatography, SEC) или гель-проникающая хроматография (ГПХ, Gel Permeaton Chromatography, GPC) реализуется, когда поведение макромолекул в порах определяется энтропийной составляющей свободной энергии, а энергетическая составляющая мала по сравнению с ней. В этом случае, коэффициент распределения будет экспоненциально зависеть от соотношения размера макромолекулы и размера пор. Скейлинговая теория предсказывает сдедующие закономерности для случая пор соизмеримых с размером макромолекулы R K d Aexp D α, (8) где R an - характерный радиус идеальной цепи или 3 R an 5 для цепи с объемным взаимодействием, D - диаметр пор, α - показатель степени от 4/3 до в зависимости от принятой модели пор (щель, капилляр, полоса) и модели цепи (идеальная или неидеальная). Таким образом, поведение макромолекул в условиях эксклюзионной хроматографии определяется размером цепи. Размер макромолекулы определяется ее химическим строением, числом звеньев в цепи (или молекулярной массой), топологией (например, размер разветвленной макромолекулы или макроцикла уменьшается по сравнению с линейной макромолекулой того же химического строения). Кроме того, размер гибких макромолекул в определенной степени зависит от использованного растворителя благодаря эффекту исключенного объема. Тем не менее, метод ГПХ получил широкое распространение в лабораторной практике как метод разделения по молекулярным массам, определения средних молекулярных масс и молекулярно-массовых распределений (ММР). Развитие метода началось с середины 5-х годов, когда были созданы первые широкопористые органические сорбенты для высокоэффективной гель-проникающей хроматографии. Как можно видеть из соотношений (8), метод не является абсолютным для определения молекулярных масс, но требует соответствующей калибровки по стандартным (желательно, узкодисперсным) образцам с известной ММ, связывающей объем (или время) удерживания с ММ. Рисунок 4 иллюстрирует калибровочные кривые для полистирола в терминах lg V R на полужестких органических сорбентах фирмы Waters (crostyragel) с различным размером пор. Для анализа какого-либо полимера по молекулярным массам необходимо подобрать колонку с подходящим размером пор или серию колонок с разными порами или воспользоваться колонкой со смесью сорбентов с разными порами (колонка Lnear в приведенном примере). Разумеется, чтобы использовать метод ГПХ для анализа ММР необходимо обеспечить условия реализации эксклюзионного механизма разделения, не осложненного эффектами взаимодействия как срединных, так и концевых звеньев цепи. Речь идет об адсорбционном взаимодействии из неполярного растворителя или обращено-фазном взаимодействии неполярных фрагментов цепи при хроматографии гидрофильных полимеров в водной среде. Кроме того, водорастворимые полимеры, содержашщие ионизированные группы, способны к сильным электростатическим взаимодействиям и требуют особенно тщательного подбора условий хроматографии. Подбор условий включает в себя выбор подходящих по химическому строению для конкретного анализа сорбента и растворителя (элюента). 5

6 Рекомендации можно найти в руководствах фирмпроизводителей хроматографического оборудования, а также в справочниках и монографиях (см., напр. ), 6 V R, мл Рис. 4. Калибровочные кривые для колонок µstyragel. На рисунке указана фирменная маркировка колонок величиной, характеризующей размер пор сорбента, которая равна длине вытянутой цепи полистирола, исключенной по стерическим причинам из пор. Хроматографическая колонка является сердцем жидкостного хроматографа. В состав хроматографа входит, кроме того, ряд необходимых дополнительных устройств:)система подачи элюента (насос), обеспечивающая стабильный поток,) система ввода пробы без остановки потока (инжектор или автосамплер), 3)детектор - устройство, обеспечивающее формирование сигнала пропорционального концентрации вещества на выходе из колонки (детекторы бывают различного типа, наиболее популярны в гель-проникающей хроматографии рефрактометрические и спектрофотометрические детекторы), и 4) системы сбора и обработки данных на базе персонального компъютера. В современных хроматографах часто управление работой всех частей хроматографа также производится посредством управляющей программы, объединенной с системой обработки данных. Хроматограмма полимера, полученная в условиях эксклюзионной хроматографии F(V) является отражением функции его молекулярно-массового распределения W(). В силу закона сохранения вещества: F V dv W d (9) Для перехода от хроматограммы к функции ММР необходимо иметь калибровочную функцию V f(), тогда искомая функция будет W F(f) df () d Эти соотношения записаны без учета приборного уширения (ПУ). Реальная хроматограмма является результатом разделения образца по ММ при движении по колонке и одновременном перемешивании полимергомологов за счет размывания зон. Поэтому функцию F(W) в соотношении (9) следует понимать как хроматограмму исправленную на ПУ. Эта функция является решением интегрального уравнения Фредгольма I рода. Известно достаточно много способов коррекции на ПУ. См., например, . Однако, в современных высокоэффективных хроматографических системах в большинстве случаев вклад ПУ в хроматограмму невелик по сравнению с ММР и им можно пренебречь. Важнейшей процедурой является калибровка хроматографа по ММ исследуемого полимера. При наличии соответствующих узкодисперсных стандартов с разными ММ, определяют для них объемы элюирования (V R или Ve) и строят калибровочную зависимость подобную той, что показана на рис.4. Обычно калибровочное соотношение ищут в форме (): n lg C V e () Наиболее часто применяются полиномы первой или третьей степени. Полиномы нечетных степеней (3. 5, 7) наиболее точно описывают характерную форму калибровочных кривых с верхним и нижним пределами по ММ.. Наборы узкодисперсных стандартов существуют для таких полимеров как полистирол, полиизопрен, полиметилметакрилат,

7 полиэтиленоксид, декстраны и некоторые другие. Можно воспользоваться, кроме того, методом универсальной калибровки, впервые введенным в практику Бенуа и сотрудниками . Метод основан на том обстоятельстве, что гидродинамический объем макромолекул пропорционален произведению характеристической вязкости на молекулярную массу полимера и может быть использован как функция элюирующего объема в качестве универсального параметра для разных полимеров. Тогда мы строим универсальное калибровочное соотношение (), () lg η n BV e, () пользуясь набором каких-либо стандартов и известным соотношением Марка-Куна-Хаувинка (3): η K a. (3) Для перехода от соотношения вида () к калибровочной зависимости () для исследуемого полимера достаточно воспользоваться соответствующим ему соотношением Марка- Куна-Хаувинка, после чего получим (4): lg n B V e + a lg K. (4) В результате из даных гель-проникающей хроматографии можно найти средние молекулярные массы разной степени усреднения, которые, по определению, представляют собой следующие величины: () n - среднечисленная ММ, W () d W d w z W d W d W d W d - среднемассовая ММ, - z-средняя ММ. Отношения ММ разной степени усреднения характеризуют статистическую ширину ММР. Наиболее часто применяют отношение w / n, которое называют индексом полидисперсности. 4. ПРОВЕДЕНИЕ ПРАКТИЧЕСКОЙ РАБОТЫ ПО АНАЛИЗУ ММР ПОЛИМЕРА МЕТОДОМ ГЕЛЬ-ПРОНИКАЮЩЕЙ ХРОМАТОГРАФИИ Цель работы: Познакомиться с работой жидкостного хроматографа, методикой проведения хроматографического эксперимента, методикой калибровки хроматографа по узкодисперсным полимерным стандартам и расчета средних молекулярных масс. Оборудование:)Жидкостной хроматограф, состоящий из насоса, инжектора, термостата колонок, колонки с полимерным сорбентом и системы обработки данных на базе персонального компъютера.)Набор узкодисперсных стандартов с разными ММ (полистирольных или полиэтиленоксидных). 3) Исследуемый образец с неизвестными молекулярными массами. Порядок работы:) Приготовление раствора смеси стандартов. 7

8 ) Получение хроматограммы стандартов и определение их объемов удерживания (V e). 3) Построение калибровочной зависимости в виде (). 4) Приготовление раствора исследуемого полимера. 5) Получение хроматограммы исследуемого полимера. 6) Расчет средних ММ образца. На рисунке 5 представлен типичный пример хроматограммы полимерного образца, подготовленный для расчета средних ММ, а именно, проведена базовая линия, определяющая начало и конец хроматограммы, и затем хроматограмма разбита на равные доли вдоль оси времени, так называемые слайсы. n w z A, A A A, A A. Рис. 5. Для каждого слайса определяется его площадь A и молекулярная масса, соответствующая его середине, вычисляется из калибровочной зависимости. Затем вычисляются средние молекулярные массы: 8

9 3. ЛИТЕРАТУРА. М.Б.Тенников, П.П.Нефедов, М.А.Лазарева, С.Я.Френкель, О едином механизме жидкостной хроматографии макромолекул на пористых сорбентах, Высокомолек. соед, А, 977, т.9, N.3, с С.Г.Энтелис, В.В.Евреинов, А.И.Кузаев, Реакционноспособные олигомеры, М: Химия, Т.М.Зимина, Е.Е.Кевер, Е.Ю.Меленевская, В.Н.Згонник, Б.Г.Беленький, Об экспериментальной проверке концепции хроматографичкской "невидимости" в критической хроматографии блоксополимеров, Высокомолек. соед., А, 99, т.33, N6, с И.В.Благодатских, А.В.Горшков, Исследование адсорбционных свойств кольцевых макромолекул в критической области, Высокомолек. соед., А, 997, т.39, N6, с А.М.Скворцов, А.А.Горбунов, Скейлинговая теория хроматографии линейных и кольцевых макромолекул, Высокомолек. соед., А, т.8, N8, с Б.Г.Беленький, Л.З.Виленчик, Хроматография полимеров, М: Химия, W.W.Yau, J.J.Krkland, D.D.Bly, odern Sze-Excluson Lqud Chromatography, New York: John Wley & Sons, Е.Л.Стыскин, Л.Б.Ициксон, Е.Б.Браудо. Практическая высокоэффективная жидкостная хроматография. Москва Ch Wu, Ed.Column Handbook for Sze Excluson Chromatography, N-Y: Academc Press..Z.Grubsc, R.Rempp, H.Benor, J. Polym. Sc., B, 967, v.5, p


УЧРЕЖДЕНИЕ РОССИЙСКОЙ АКАДЕМИИ НАУК ИНСТИТУТ ЭЛЕМЕНТООРГАНИЧЕСКИХ СОЕДИНЕНИЙ им. А.Н.НЕСМЕЯНОВА. НАУЧНО-ОБРАЗОВАТЕЛЬНЫЙ ЦЕНТР ПО ФИЗИКЕ И ХИМИИ ПОЛИМЕРОВ Благодатских И.В ЖИДКОСТНАЯ ХРОМАТОГРАФИЯ ПОЛИМЕРОВ

1 Высокомолекулярные соединения (Лысенко Е.А.) Лекция 7. Фракционирование макромолекул 2 1. Понятие о фракционировании. 2. Препаративное фракционирование. 3. Метод турбидиметрического титрования. 4. Гель-проникающая

Лабораторная работа 7б Хроматографическое определение состава газовой фазы почв. Хроматография (от греч. chroma, родительный падеж chromatos цвет, краска) - физико-химический метод разделения и анализа

8. Вопросы 1. Дайте определение хроматографии. 2. Какие особенности хроматографии позволяют достичь лучшего разделения веществ с близкими свойствами по сравнению с другими методами разделения. 3. Перечислите

Московский физико-технический институт (Государственный университет) Кафедра молекулярной физики Физические методы исследования Лекция Газовая хроматография Теория и принципы г. Долгопрудный, ноября г.

04.07 Московский физико-технический институт Департамент молекулярной и биологической физики Физические методы исследования Лекция 8 Хроматография г. Долгопрудный, 6 апреля 07г. План. История возникновения

Московский физико-технический институт (Государственный р университет)) Кафедра молекулярной физики Физические методы исследования Лекция 0 Газовая хроматография г. Долгопрудный, 5 ноября 0г. План. История

Аналитическая химия 4 семестр, Лекция 17. Модуль 3. Хроматография и другие методы анализа. Хроматография. Принцип и классификация методов. 1. Принцип хроматографического разделения. Стационарная и подвижная

Открытие хроматографии(1903 г.) МИХАИЛ СЕМЕНОВИЧ ЦВЕТ (1872-1919) Основные этапы развития хроматографии 1903 г. Открытие хроматографии (Цвет М.С.) 1938 г. Тонкослойная или планарная хроматография (Измайлов

Московский физико-технический институт (Государственный университет) Департамент молекулярной и биологической физики Физические методы исследования Лекция 7 Газовая и жидкостная хроматография. Практическая

ГЛАВА 7 ГАЗОЖИДКОСТНАЯ ХРОМАТОГРАФИЯ Как метод анализа хроматография была предложена русским ботаником М. С. Цветом для решения частной задачи определения компонентов хлорофилла. Метод оказался универсальным.

Московский физико-технический институт Департамент молекулярной и биологической физики Физические методы исследования Лекция 9 Газовая хроматография Техника и методы эксперимента г. Долгопрудный, 3 апреля

Тема 5. Основы реологии. Вязкость растворов полимеров. Теоретическая часть. Вязкие жидкости и растворы высокомолекулярных веществ (ВМС) по характеру течения делятся на ньютоновские и неньютоновские. Ньютоновские

Преимущества колонок Agilent AdvanceBio SEC для эксклюзионной хроматографии при анализе биофармацевтических препаратов Сравнение колонок различных производителей для повышения качества данных Обзор технической

Московский физико-технический институт (Государственный университет) Департамент молекулярной и биологической физики Физические методы исследования Лекция 9 Жидкостная хроматография Методы и техника г.

Журнал Аналитической химии, 5, том 6, 7, c. 73-78 УДК 543.544 Моделирование газовой хроматографии при заданной зависимости константы Генри от температуры. 5г. Прудковский А.Г. Институт геохимии и аналитической

Колонки для эксклюзионной хроматографии Agilent AdvanceBio SEC для анализа агрегации: совместимость с приборами Обзор технической информации Введение Колонки Agilent AdvanceBio SEC это новое семейство

МУЛЬТИДЕТЕКТОРНая ГЕЛЬ-ПРОНИКАЮЩая ХРОМАТОГРАФИя для АНАЛИЗа ПОЛИМЕРОВ К.Свирский, Agilent Technologies, [email protected] Гель-проникающая хроматография единственная хроматографическая методика,

АННОТАЦИЯ рабочей программы учебной дисциплины «Введение в хроматографические методы анализа» по направлению подготовки 04.03.01 Химия по профилю подготовки «Аналитическая химия» 1. Цели освоения дисциплины

46. ХРОМАТОГРАФИЧЕСКИЕ МЕТОДЫ РАЗДЕЛЕНИЯ Хроматографическими называют многостадийные методы разделения, в которых компоненты образца распределяются между двумя фазами неподвижной и подвижной. Неподвижная

МИНОБРНАУКИ РОССИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ХИМИЧЕСКИЙ ФАКУЛЬТЕТ Аннотированная рабочая программа дисциплины Хроматографические методы анализа Направление подготовки

Научно-технологическая компания СИНТЕКО М Е Т О Д И К А КОЛИЧЕСТВЕННОГО ХИМИЧЕСКОГО АНАЛИЗА КОФЕ И ЧАЯ НА СОДЕРЖАНИЕ КОФЕИНА МЕТОДОМ ЖИДКОСТНОЙ ХРОМАТОГРАФИИ. ДЗЕРЖИНСК 1997г. 1 Настоящий документ распространяется

Лекция 7 (9.05.05) ПРОЦЕССЫ ПЕРЕНОСА В ГАЗАХ Всякая термодинамическая система, под которой мы понимаем совокупность большого числа молекул, при неизменных внешних условиях приходит в состояние термодинамического

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Уральский государственный университет им. А.М. Горького» ИОНЦ «Экология и природопользование»

Высокомолекулярные соединения (Лысенко Е.А.) Лекция 5 (-Температура). -температура и идеальность раствора.. -температура и фазовые равновесия. 3. -температура и размеры макромолекулярных клубков. .. Влияние

Лекция 6 Хроматографические методы анализа План лекции 1. Понятия и термины хроматографии. 2. Классификация хроматографических методов анализа. Хроматографическое оборудование. 3. Виды хроматографии: газовая,

Теория реального вещества. Наукой представлено большое число теории или законов реального газа. Наиболее известный закон реального газа Ван-дер-Ваальса, который увеличивает точность описания поведения

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ХИМИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА АНАЛИТИЧЕСКОЙ ХИМИИ П Р О Г Р А М М А С П Е Ц И А Л Ь Н О Г О К У Р С А «ХРОМАТОГРАФИЧЕСКИЙ АНАЛИЗ» ДЛЯ СТУДЕНТОВ 5 КУРСА СПЕЦИАЛЬНОСТИ

Лекция 7. ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ 1. Поверхностное натяжение 1.1. Поверхностная энергия. До сих пор мы не учитывали существования границы раздела различных сред*. Однако ее наличие может оказаться весьма

Вязкоупругость полимерных жидкостей. Оснвные свойства полимерных жидкостей. К полимерным жидкостям с сильно переплетенными цепями относятся полимерные расплавы, концентрированные растворы и полуразбавленные

Московский физико-технический институт (Государственный р университет)) Кафедра молекулярной физики Физические методы исследования Лекция 9 Хроматография. Введение г. Долгопрудный, 9 октября 0г. План.

АНАЛИТИЧЕСКАЯ ХИМИЯ УДК 543.544 АДСОРБЦИОННАЯ ХРОМАТОГРАФИЯ В АНАЛИЗЕ БИОГАЗА 1999 г. М.В. Николаева НИИ химии ННГУ им. Н.И. Лобачевского Л.П. Прохорова Нижегородская станция аэрации Разработана методика

СОВРЕМЕННАЯ ПРЕПАРАТИВНАЯ ФЛЕШ-ХРОМАТОГРАФИЯ Часть 2* А.Аболин, к.х.н., "ГалаХим" [email protected] П.-Ф. Икар, Interchim (Франция) Мы продолжаем публиковать материалы о современных методах препаративной

Краткое руководство по выбору колонок и стандартов для гель-проникающей хроматографии РУКОВОДСТВО ПО ВЫБОРУ Введение Гель-проникающая хроматография (ГПХ) это методика оценки молекулярномассового распределения

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ Хроматография ОФС.1.2.1.2.0001.15 Взамен ст. ГФ XI, вып.1 Хроматографией называется метод разделения смесей веществ, основанный

Программное обеспечение Agilent для гель-проникающей хроматографии Единое и универсальное решение для быстрого и простого анализа полимеров Основные характеристики Введение Компания Agilent Technologies

2.2.29. ВЫСОКОЭФФЕКТИВНАЯ ЖИДКОСТНАЯ ХРОМАТОГРАФИЯ Высокоэффективная жидкостная хроматография (ВЭЖХ) представляет собой метод разделения, основанный на различном распределении веществ между двумя не смешивающимися

Ярославский государственный педагогический университет им. К. Д. Ушинского Кафедра общей физики Лаборатория молекулярной физики Лабораторная работа 5 Изучение статистических закономерностей на доске Гальтона

Лекция 3. СВОБОДНАЯ ПОВЕРХНОСТНАЯ ЭНЕРГИЯ ГРАНИЦЫ РАЗДЕЛА ФАЗ Поверхностные силы. Поверхностное натяжение Рассмотрим систему содержащую жидкость и равновесный с ней пар. Распределение плотности в системе

2 Методы анализа: 1. Химические методы. Химическое равновесие и его использование в анализе. Кислотно-основное равновесие. Сила кислот и оснований, закономерности их изменения. Функция Гаммета. Вычисление

Лекция 7 Разветвленные цепные реакции. Критические явления в разветвленных цепных реакциях. Э.-К. стр. 38-383, 389-39. Простое выражение для скорости образования радикалов: d r f(p) g(p) (1)

Лекция 6 Лукьянов И.В. Явления переноса в газах. Содержание: 1. Длина свободного пробега молекул. 2. Распределение молекул по длинам свободного пробега. 3. Диффузия. 4. Вязкость газа (внутреннее трение).

Федеральное государственное бюджетное учреждение науки «Кировский научно исследовательский институт гематологии и переливания крови Федерального медико биологического агентства» 3.3.2. Медицинские иммунобиологические

1. Пояснительная записка 1.1. Требования к студентам Студент должен обладать следующими исходными компетенциями: базовыми положениями математических и естественных наук; владеть навыками самостоятельной

1 ЛЕКЦИЯ 10 Две системы в диффузионном контакте. Химический потенциал. Условие равновесия фаз. Теплота перехода. Формула Клапейрона-Клаузиуса. Две системы в диффузионном контакте Равновесное состояние

1. Перечень компетенций с указанием этапов (уровней) их формирования. ПК-1: способность использовать знания теоретических, методических, процессуальных и организационных основ судебной экспертизы, криминалистики

Тема. Физико-химия поверхностных явлений. Адсорбция. Поверхностные явления проявляются в гетерогенных системах, т.е. системах, между компонентами которых имеется поверхностьраздела. Поверхностными явлениями

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Физический факультет ИЗУЧЕНИЕ КОЭФФИЦИЕНТОВ ВЯЗКОСТИ ЖИДКОСТИ МЕТОДОМ СТОКСА Методические указания для выполнения лабораторной работы Томск 2014 Рассмотрено и утверждено

Высокоэластичность полимерных сеток. Полимерные сетки. Полимерные сетки состоят из длинных полимерных цепей, сшитых между собой и образующих тем самым гигантскую трехмерную макромолекулу. Все полимерные

Газовая хроматография 1 Требования к веществам 1. Летучесть 2. Термостабильность (вещество должно испарятся без разложения) 3. Инертность Схема газового хроматографа 1 2 3 4 5 1. Баллон с газом-носителем

Учебная программа составлена на основе образовательного стандарта ОСВО 1-31 05 01 2013 и учебного плана УВО G 31 153/уч. 2013 г. СОСТАВИТЕЛЬ: В.А.Винарский, доцент, кандидат химических наук, доцент РЕКОМЕНДОВАНА

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ Хроматография на бумаге ОФС.1.2.1.2.0002.15 Взамен ст. ГФ XI, вып.1 Хроматографический процесс, протекающий на листе фильтровальной

Министерство образования и науки Российской Федерации Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ

ПОЛИМЕРНЫЕ СТАНДАРТЫ AGILENT ДЛЯ ГЕЛЬ-ПРОНИКАЮЩЕЙ/ ЭКСКЛЮЗИОННОЙ ХРОМАТОГРАФИИ Содержание ПОЛИМЕРНЫЕ СТАНДАРТЫ ДЛЯ ГПХ... 3 InfinityLab EasiVial...5 InfinityLab EasiCal...8 Стандарты полистирола...9 Стандарты

Г Р У П П А К О М П А Н И Й Б И О Х И М М А К З А К Р Ы Б ИО 1 1 9 8 9 9, Россия, Москва, Ленин Тел./Факс (0 9 5) 939-59-67, тел. 939- И Н С Т Р У К Ц И Я по применению Аналитического комплекта МОСКВА

Теория ионной хроматографии: универсальный подход к описанию параметров пика 1998г. А.Г.Прудковский, А.М.Долгоносов Институт геохимии и аналитической химии им.в.и.вернадского Российской академии наук 117975

Московский физико-технический институт (Государственный университет) Департамент молекулярной и биологической физики Физические методы исследования Лекция 8 Детекторы в хроматографии Жидкостная хроматография

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ Электрофорез ОФС.1.2.1.0021.15 Взамен ст. ГФ XI, вып.1 Электрофорез метод анализа, основанный на способности заряженных частиц,

1 Высокомолекулярные соединения (Лысенко Е.А.) Лекция 10. Термомеханический анализ аморфных полимеров. 2 1. Основные понятия механического анализа физических тел. 2. Термомеханические кривые аморфных полимеров

5 ФИЗИЧЕСКИЕ РАВНОВЕСИЯ В РАСТВОРАХ 5 Парциальные мольные величины компонентов смеси Рассмотрение термодинамических свойств смеси идеальных газов приводит к соотношению Ф = Σ Ф, (5) n где Ф любое экстенсивное

6.. Московский физико-технический институт (Государственный университет) Кафедра молекулярной физики Физические методы исследования Лекция Газовая хроматография. Техническая реализация Жидкостная хроматография

Высокомолекулярные соединения (Лысенко Е.А.) Лекция 4. Фазовые равновесия в растворах полимеров.. Кинетика растворения. Концентрационные режимы.. Уравнение состояния полимерного раствора. . Фазовые равновесия

Лабораторная работа. Определение содержания аренов состава С 8 в бензиновой фракции Знание углеводородного (УВ) состава нефтей и конденсатов на молекулярном уровне имеет большое значение как для нефтехимии

Идеальная полимерная цепь. Идеальная полимерная цепь. Идеальная цепь - это модельная цепь, в которой пренебрегают так называемыми объемными взаимодействиями, т.е. взаимодействиями удаленных по цепи звеньев.

Лабораторная работа 1.17 ИЗУЧЕНИЕ ЗАКОНА НОРМАЛЬНОГО РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН М.В. Козинцева Цель работы: изучение распределения случайных величин на механической модели (доска Гальтона). Задание:

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ УТВЕРЖДАЮ Декан химического факультета Д.В. Свиридов 2011 г. Регистрационный УД- /р РАСТВОРЫ ПОЛИМЕРОВ Учебная программа по специальности 1-31 05 01 Химия (по направлениям)

Гель-хроматография как метод определения молекулярной массы

Гель-проникающая хроматография представляет собой разновидность метода фракционирования на колонке, в которой разделение осуществляется по принципу молекулярного сита. Этот принцип был известен уже в начале 50-х годов, но лишь после того, как Порат и Флодин вновь открыли и широко использовали этот метод, он получил признание и широкое применение в научных исследованиях. Начиная с этого момента и до 1964 г. было опубликовано более 300 работ, посвященных этому новому методу фракционирования.

Гель-фильтрация или эксклюзионная хроматография (ситовая, гель-проникающая, гель-фильтрационная хроматография) - разновидность хроматографии, в ходе которой молекулы веществ разделяются по размеру за счёт их разной способности проникать в поры неподвижной фазы. При этом первыми выходят из колонки наиболее крупные молекулы (бомльшей молекулярной массы), способные проникать в минимальное число пор стационарной фазы. Последними выходят вещества с малыми размерами молекул, свободно проникающие в поры. В отличие от адсорбционной хроматографии, при гель-фильтрации стационарная фаза остается химически инертной и с разделяемыми веществами не взаимодействует. Неподвижной фазой являются поры сорбента, заполненные жидкостью. Средняя скорость передвижения этой фазы вдоль оси колонки равна нулю. Анализируемое вещество перемещается вдоль оси колонки, двигаясь вместе с подвижной фазой и время от времени делая остановки при попадании в неподвижную фазу. Молекулы делают остановки в щелевидных порах, размер которых по порядку величины соответствует размеру макромолекул.

При эксклюзионной хроматографии молекулы, имеющие в растворе большой размер, или совсем не проникают, или проникают только в часть пор сорбента (геля) и вымываются из колонки раньше, чем небольшие молекулы. Соотношение эффективных размеров макромолекул и пор сорбента определяет коэффициент распределения K d , от которого зависит объем удерживания компонента V R в колонке:

Эффективным размером макромолекулы при эксклюзионной хроматографии является ее гидродинамический радиус R, который вместе с молекулярной массой полимера М определяет характеристическую вязкость полимера. Универсальную калибровочную зависимость V R от произведения / уравнение (2) впервые получил экспериментально Г. Бенуа, она имеет вид (рис. 1):

где А и В-константы. Уравнение (2) одинаково справедливо для линейных и разветвленных полимеров, блок- и привитых сополимеров, олигомеров.

Рис. 1.

хроматография молекулярный эксклюзионный

В области от V 0 до V T (объем колонки, доступный для растворителя и молекул ниже определенного размера, соответствующего М мин) рабочая зависимость имеет линейный (квазилинейный) характер. Соответствующие объемам V 0 и V T мол. массы представляют собой пределы исключения - М макс (молекулы большого размера, не проникают в поры сорбента) и М мин, (молекулы небольшие, полностью проникают в поры сорбента). Сорбенты с порами одного размера теоретически способны разделять макромолекулы в пределах коммерческие сорбенты характеризуются. Ддя разделения макромолекул в большом диапазоне М нужны сорбенты с бимодальным и тримодальным распределением пор по размерам, обеспечивающие линейную мол. массовую калибровочную зависимость в диапазоне М = 10 2,5 - 10 6,5 . Максимальная селективность достигается увеличением объема перового пространства сорбента, у бимодального и тримодального сорбентов, кроме того, оптимальным распределением пор по размерам. Важно, чтобы при разделении смеси макромолекул их наибольшая и наименьшая М находились в пределах М МИН - М МАКС характерных для данного сорбента.

Механизм эксклюзионной хроматографии. Эксклюзионная хроматография (Size Exclusion Chromatography, SEC) или гель-проникающая хроматография (ГПХ, Gel Permeation Chromatography, GPC) реализуется, когда поведение макромолекул в порах определяется энтропийной составляющей свободной энергии, а энергетическая составляющая мала по сравнению с ней. В этом случае, коэффициент распределения будет экспоненциально зависеть от соотношения размера макромолекулы и размера пор. Макромолекулы в р-ре представляют собой статистич. ансамбль (статистич. клубок). Их распределение между пористым сорбентом и р-ром контролируется изменением энергии Гиббса при переходе макромолекулы из р-ра в поры: где- изменение энтальпиимакромолекулы вследствие взаимод. ее сегментов с пов-стью сорбента (матрицей геля); - уменьшение энтропиипри переходе макромолекулы из р-ра в поры; Т - абс. т-ра. Разделение макромолекул происходит в эксклюзионном режиме, когда, a K d , зависящий от соотношения размеров макромолекул и пор, меньше 1. Для подавления нежелательных для эксклюзионной хроматографии явлений ионной эксклюзии и ионообменной сорбции модифицируют поверхность сорбентов (для придания ей нейтрального заряда при рН > 4), увеличивают ионную силу растворителя, ослабляя кулоновские взаимодействие, добавляют органические растворители, смещая тем самым рК полиэлектролита или изоэлектрическую точку у полиамфолитов. С другой стороны, ионообменную сорбцию и ионную эксклюзию можно использовать для разделения нейтральных макромолекул, полианионов и поликатионов одного размера. Поскольку диссоциация полиэлектролитов увеличивается с разбавлением их растворов, то при эксклюзионной хроматографии макромолекулы на краях хроматографической колонки, где их концентрация мала, диссоциируют и движутся по колонке не по законам эксклюзионной хроматографии, а по законам ионообменной сорбции и ионной эксклюзии в зависимости от заряда поверхности сорбента и макромолекулы, что приводит к искажению формы кривой зависимости V и М (рис. 2), а также позволяет диагностировать наличие того или другого процесса.

Рис. 2. Эксклюзионная хроматография нейтральных макромолекул (а) и полиэлектролитов: ионная эксклюзия (б), ионообменная сорбция (в)

Эффекты, аналогичные ионообменной сорбции, но только в более слабой степени, могут наблюдаться при гидрофобных взаимодействиях макромолекулярных сегментов с модифицированной гидрофобными радикалами поверхностью сорбента или при электростатическом взаимодействии поверхностных силанольных гидроксигрупп с с функциональными группами полярных макромолекул. Все эти эффекты должны подавляться при проведении эксклюзионной хроматографии.

Для анализа какого-либо полимера по молекулярным массам необходимо подобрать колонку с подходящим размером пор или серию колонок с разными порами или воспользоваться колонкой со смесью сорбентов с разными порами (колонка Linear в приведенном примере). Разумеется, чтобы использовать метод ГПХ для анализа ММР необходимо обеспечить условия реализации эксклюзионного механизма разделения, не осложненного эффектами взаимодействия как срединных, так и концевых звеньев цепи. Речь идет об адсорбционном взаимодействии из неполярного растворителя или обращено-фазном взаимодействии неполярных фрагментов цепи при хроматографии гидрофильных полимеров в водной среде. Кроме того, водорастворимые полимеры, содержашщие ионизированные группы, способны к сильным электростатическим взаимодействиям и требуют особенно тщательного подбора условий хроматографии. Подбор условий включает в себя выбор подходящих по химическому строению для конкретного анализа сорбента и растворителя (элюента).

Техника эксклюзионной хроматографии. Для разделения макромолекул в режиме эксклюзионной хроматографии используют колонки двух типов: работающие в узком = 10 2) и широком (= 10 4 - 10 5) диапазонах. Колонки широкого диапазона M имеют широкое распределение пор сорбента по размерам (бимодальное, тримодальное). Это распределение подбирается таким образом, чтобы при заданных степени линейности калибровочной мол.-массовой зависимости и диапазона масс обеспечивалась наибольшая степень селективности. Эксклюзионная хроматография осуществляется с помощью хроматографа, детектором служит спектрофотометр или проточный рефрактометр с предельной чувствительностью 5 х 10 -8 ед. рефракции, что соответствует концентрации полимера 5-10 -5% . Обычно прибор работает при комнатной температуре, однако эксклюзионная хроматография полиолефинов требует повышенной температуры, что способствует увеличению селективности разделения, эффективности колонок и скорости анализа вследствие уменьшения вязкости подвижной фазы. Современные хроматографы комплектуются автоматическим устройством для приготовления (растворение полимера, фильтрация р-ра) и ввода пробы, компьютером для интерпретации результатов анализа ММР. Применение комбинации рефрактометрического детектора и фотометра позволяет определять ММР и индексы разветвленности без калибровки хроматографа по полимерным стандартам. При гель-фильтрации белков необходимо принимать меры для предотвращения их адсорбции на сорбенте и не допускать их денатурации. В отличие от эксклюзионной хроматографии синтетических полимеров и олигомеров, используемой главным образом в аналитических целях, гель-фильтрация белков - один из важнейших способов их выделения и очистки.

Ддя эксклюзионной хроматографии используют макропористые неорганические или полимерные сорбенты. Для эксклюзионной хроматографии полярных полимеров неорганические сорбенты (силикагели и макропористые стекла) модифицируют кремнийорганическими радикалами, а для эксклюзионной хроматографии гидрофильных полимеров - гидрофильными группами. Среди полимерных сорбентов наиболее распространены стирол-дивинил-бензольные (для эксклюзионной хроматографии высокополимеров и олигомеров). Для гель-фильтрации биополимеров, прежде всего белков, используют гидрофильные полимерные сорбенты (сефадексы - декстраны с поперечными сшивками, а также полиакриламидные гели) или модифицированные полисахаридами макропористые силикагели.

Эксклюзионную хроматографию эффективно применяют при разработке новых полимеров, технологических процессов их получения, контроле производства и стандартизации полимеров. Эксклюзионную хроматографию используют для анализа ММР полимеров, исследования, выделения и очистки полимеров, в т. ч. биополимеров.

5. Гель-хроматография

Гель-фильтрация (синоним гель-хроматография) - метод разделения смеси веществ с различными молекулярными массами путем фильтрации через различные так называемые ячеистые гели.

Неподвижной фазой в гель-хроматографии является растворитель, находящийся в порах геля, а подвижной – сам растворитель, т.е и подвижную и неподвижную фазы составляет одно и тоже вещество или одна и та же смесь вещества. Гель готовят на основе, например, декстрана, полиакриламида или других природных и синтетических соединений.

В отличии от других хроматографических методов, использующих различия в химических свойствах разделяемых веществ, проявляющихся при их распределении между стационарной и подвижной фазами, разделение основано на ситовом эффекте, характерном для гелей с определенным радиусом пор. Растворитель (подвижная фаза) заполняет как внешний объем между зернами геля, так и внутренний объем пор. Объем растворителя между зернами геля – V м называют промежуточным, транспортным или мертвым объемом, а внутренний объем пор – V п рассматривается как объект стационарной фазы. Когда в колонку вводят пробу, содержащую несколько типов ионов или молекул с разными размерами, то они стремятся из подвижной фазы проникнуть внутрь пор. Такое проникновение обусловлено энтропийным распределением, поскольку концентрация молекул разделяемых веществ в наружном растворе оказывается выше, чем в поровом пространстве. Но оно становится возможным только в том случае, если размеры ионов или молекул меньше диаметра пор.


Рис 5 Общий вид градуировочной кривой в гель-хроматографии:

1 – область исключения, где все молекулы имеют размер больше m 2 ;

2 – область проникновения или разделения, где размеры молекул лежат в интервале от m 1 и m 2 ;

3 - область, где происходит полное проникновение молекул с размерами менее m 1.

В процессе гель-хроматографирования могут быть отделены крупные молекулы, которые гелем не сорбируются, так как их размеры превышают размеры пор, от мелких, которые проникают в поры, а затем могут быть элюированы. Проводятся и более тонкие разделения, так как размеры пор можно регулировать, изменяя, например, состав растворителя и, как следствие, набухаемость геля. Гель-хроматография может быть выполнена в колоночном варианте и в тонкослойном.

Применяемые на практике гели обычно подразделяют на мягкие, полужесткие и жесткие. Мягкими гелями являются высокомолекулярные органические соединения с незначительным числом поперечных связей. Фактор емкости, равный отношению объема растворителя внутри геля к его объему вне геля, у них равен 3. При набухании они значительно увеличивают собственный объем. Это сефадексы или декстрановые гели, агарочные гели, крахмал и др. Они применяются для разделения смесей низкомолекулярных веществ, часто в тонкослойном варианте. Хроматографирование на мягких гелях называют гель - фильтрацией.

Полужесткие гели получают путем полимеризации. Большое распространение получили стирогели - продукты сополимеризации стирола и дивинилбензола с большим числом поперечных связей. Фактор емкости полужестких гелей лежит в пределах 0,8...1,2, их объем при набухании увеличивается не очень значительно (в 1,2...1,8 раза). Хроматографирование на полужестких гелях называют гель-проникающей хроматографией.

К жестким гелям относят силикагели и часто пористые стекла, хотя они и не являются гелями. Жесткие гели имеют небольшой фактор емкости (0,8...1,1) и фиксированный размер пор. Эти материалы используют в гель-хроматографии при высоком давлении.

Растворители гель-хроматографии должны растворять все компоненты смеси, смачивать поверхность геля и не адсорбироваться на ней.

Практическое применение гель-хроматографии связано, главным образом, с разделением смеси высокомолекулярных соединений, хотя нередко они используются для разделения и низкомолекулярных, так как разделение этим методом возможно при комнатной температуре.

6. Высокоэффективная жидкостная хроматография (ВЖКХ)

Высокоэффективная жидкостная хроматография – наиболее эффективный метод анализа органических проб сложного состава. Процесс анализа пробы делится на 2 этапа:

· разделение пробы на составляющие компоненты;

· детектирование и измерение содержания каждого компонента.


Задача разделения решается при помощи хроматографической колонки, которая представляет собой трубку, заполненную сорбентом. При проведении анализа через хроматографическую колонку подают жидкость (элюент) определенного состава с постоянной скоростью. В этот поток вводят точно отмеренную дозу пробы.

Компоненты пробы, введенной в хроматографическую колонку, из-за их разного сродства к сорбенту колонки двигаются по ней с различными скоростями и достигают детектора последовательно в разные моменты времени.

Таким образом, хроматографическая колонка отвечает за селективность и эффективность разделения компонентов. Подбирая различные типы колонок можно управлять степенью разделения анализируемых веществ. Идентификация соединений осуществляется по их времени удерживания. Количественное определение каждого из компонентов рассчитывают, исходя из величины аналитического сигнала, измеренного с помощью детектора, подключенного к выходу хроматографической колонки.

При анализе соединений с низкими ПДК (биогенные амины, полиароматические углеводороды, гормоны, токсины) из-за трудоемкости подготовки реальных проб особенно важной характеристикой становится чувствительность и селективность метода. Применение флуориметрического детектора позволяет не только снизить пределы обнаружения, но и селективно выделить анализируемые вещества на фоне матричных и сопутствующих компонентов пробы.

Метод ВЭЖХ применяется в санитарно-гигиенических исследованиях, экологии, медицине, фармацевтике, нефтехимии, криминалистике, для контроля качества и сертификации продукции.

В качестве блока подачи элюента используется насос "Питон" шприцевого типа, который имеет следующие особенности:

· отсутствие пульсаций давления при подаче растворителя;

· большой диапазон объемных скоростей потока;

· большой объем камеры насоса;

· расширяемость (возможность сочетать несколько блоков для создания градиентной системы).

В хроматографической системе могут использоваться различные типы детекторов, например, "Флюорат-02-2М" (спектральная селекция осуществляется фильтрами) или "Флюорат-02 Панорама" (спектральная селекция осуществляется монохроматорами).

7. Применение

Жидкостная хроматография важнейший физико-химический метод исследования в химии, биологии, биохимии, медицине, биотехнологии. Ее используют для анализа, разделения, очистки и выделения аминокислот, пептидов, белков, ферментов, вирусов, нуклеотидов, нуклеиновых кислот, углеводов, липидов, гормонов и т. д.; изучения процессов метаболизма в живых организмах лекарственных препаратов; диагностики в медицине; анализа продуктов химического и нефтехимического синтеза, полупродуктов, красителей, топлив, смазок, нефтей, сточных вод; изучения изотерм сорбции из раствора, кинетики и селективности хим. процессов.

В химии высокомолекулярных соединений и в производстве полимеров с помощью жидкостной хроматографии анализируют качество мономеров, изучают молекулярно-массовое распределение и распределение по типам функциональности олигомеров и полимеров, что необходимо для контроля продукции. Жидкостную хроматографию используют также в парфюмерии, пищевой промышленности, для анализа загрязнений окружающей среды, в криминалистике.


Заключение

Начало ХХ века ознаменовалось открытием хроматографического метода анализа, обогатившего и объединившего различные области науки, без которых немыслим научный прогресс XXI века. Внедрение хроматографических методов, и в первую очередь жидкостной хроматографии, в медицину позволило решить многие жизненно важные проблемы: исследование степени чистоты и стабильности лекарственных средств, препаративное выделение индивидуальных гормональных препаратов (например, инсулина, интерферона), количественное определение в биологических объектах нейромедиаторов: адреналина, норадреналина. С наличием этих веществ в живом организме связывают способность к запоминанию, обучению, приобретению каких-либо навыков. Идентификация методами ВЭЖХ стероидов, аминокислот, аминов и других соединений оказалась крайне важной при диагностике некоторых наследственных заболеваний: инфаркта миокарда, диабета, различных заболеваний нервной системы. Одной из актуальных задач клинической медицины для экспресс-диагностики является проведение так называемого профильного анализа компонентов биологического объекта, осуществляемого методами жидкостной хроматографии, что позволяет не проводить идентификацию каждого пика, а сопоставлять профили хроматограмм для заключения о норме или патологии. Обработка огромного массива информации осуществляется только с использованием ЭВМ (метод получил название "метод распознавания образов").


Список литературы

1. Васильев В. П. Аналитическая химия, В 2 кн. Кн. 2 Физико-химические методы анализа: Учеб. для студ. вузов, обучающихся по химико-технол. спец. – 4-е изд., стереотип. – М.: Дрофа, 2004 – 384 с.

2. Москвин Л.Н., Царицына Л.Г. Методы разделения и концентрирования в аналитической химии. – Л.: Химия, 1991. – 256 с.

3. http://bibliofond.ru/view.aspx?id=43468

4. http://ru.wikipedia.org/wiki/Бумажная_хроматография

5. http://referats.qip.ru/referats/preview/93743/6

6. http://www.curemed.ru/medarticle/articles/12186.htm

7. http://www.lumex.ru/method.php?id=16

8. http://www.xumuk.ru/encyklopedia/1544.html

9. http://www.pereplet.ru/obrazovanie/stsoros/1110.html